

Risk Stratification for Sudden Death in ACHD

Paul Khairy, MD, PhD

Scientific Director, Adult Congenital Center Professor of Medicine and Research Chair, University of Montreal

Living with the Risk of Sudden Death

Queenstown, New Zealand December 2017

SUDDEN DEATH IN CONGENITAL HEART DISEASE

CARDIAC ARREST/UNSTABLE VT/VF

ICD INDICATIONS: SECONDARY PREVENTION

COR	LOE	Recommendation
I	В	ICD therapy is indicated in adults with CHD who are survivors of cardiac arrest due to VF or hemodynamically unstable VT after evaluation to define the cause of the event and exclude any completely reversible etiology
I	В	ICD therapy is indicated in adults with CHD and spontaneous sustained VT who have undergone hemodynamic and FP evaluation.
	С	Catheter ablation or surgery may offer a reasonable alternative or adjunct to ICD therapy in carefully selected patients.

PACES/HRS. *Heart Rhythm* 2014;11:e102-65

Ben Nevis Inn WEATHER FORECASTING STONE

CONDITION

Stone is Wet Stone is Dry Shadow on Ground White on Top Can't see Stone Swinging Stone Stone Jumping Up & Down Stone Gone Rain Not Raining Sunny Snowing Foggy Windy Earthquake Tornado

FORECAST

1. What are we trying to achieve?

2. Are we on the right track?

3. How can we do better?

WHAT ARE WE TRYING TO ACHIEVE?

www.familyflame.net

LAO TSU (6th century BC)

"Those who have knowledge don't predict.

Those who predict don't have knowledge"

www.quoteauthors.com

RISK-BENEFIT ASSESSMENT

Shaffer et al. BMC Med Res Methodology 2006;6:48

KEY FACTORS IN ASSESSING RISKS AND BENEFITS

BENEFIT

Probability of sudden death due to

a malignant ventricular arrhythmia

Competing risks for mortality

Effectiveness of therapy in

preventing sudden death

RISK

Morbidity and mortality associated

with ICD therapy

Cost considerations

COST PER QALY

Treatment	€/QALY	USD/QALY
Englanril for heart failure	83	113
Intensive insulin therapy for a 25 years old	6907	9394
Line to a substation	0907	25,402
Liver transplantation	18,678	27 356
Heart transplantation	20,115*	28,700
Primary prevention ICD in MUSTT	28,500	38,760
Primary prevention ICD in MADIT I	29,254	39,785
Primary prevention ICD in COMPANION	42,163	57,342
Primary prevention ICD in DEFINITE	43,001	58,481
Primary prevention ICD in MADIT II	45,348	61,673
Lung transplantation	55,317*	75,231
Primary prevention ICD in SCD-HeFT	58,842	80,025
ACEI for hypertension in echo-LVH	143,680	195,404
Screening at 50 years for proteinuria, then ACEI	203,177	276,321
ACEI for hypertension in unselected patients	502,880	683,917
Statin for primary prevention	38,793-1,005,760	52,758 - 1,367,834
Intensive insulin therapy for an 85-years-old	1,508,640	2,051,750

"WHO RULE": COST-PER-QALY THRESHOLD OF 3X PER-CAPITA GDP

COUNTRY	2016 GDP PER CAPITA	\$THRESHOLD/QALY
United States	\$57,467	\$172,401
Australia	\$46,790	\$140,370
Canada	\$44,025	\$132,075
New Zealand	\$39,059	\$117,177
Russia	\$23,163	\$69,489
China *:	\$15,535	\$46,605
Egypt	\$11,132	\$33,396
India 💿	\$6,572	\$19,716
Haiti 🗖	\$1,784	\$5,352

Baltussen RM et al. Global Programme on Evidence for Health Policy. Geneva, Switzerland: World Health Organization; 2002

ARE WE ON THE RIGHT TRACK?

ICD RECIPIENTS WITH CHD

Vehmeijer JT et al. Eur Heart J 2016;37:1439-48

TOF: APPROPRIATE ICD SHOCKS

Khairy P et al. *Circulation* 2008;117:363-370

TOF: RISK SCORE FOR PRIMARY PREVENTION

Variable	Points
Prior palliative shunt	2
Inducible sustained VT	2
$QRS \ge 180 \text{ ms}$	1
Ventriculotomy incision	2
Non-sustained VT	2
LVEDP≥12 mmHg	3
TOTAL POINTS	0-12

6-12

High

26

17.5%

Khairy P et al. *Circulation* 2008;117:363-370

TOF: NONINVASIVE RISK SCORE

REFINING RISK STRATIFICATION IN TOF

- Strain measures of the right ventricle
- QRS fragmentation
- QRS vector magnitude
- Neurohormonal activation
- RV electroanatomic voltage mapping
- Slow conduction across anatomical isthmuses
- Genetic polymorphisms

ICD INDICATION: TOF

CORLOERecommendationIIaBICD therapy is reasonable in selected adults
with tetralogy of Fallot and multiple risk
factors for sudden cardiac death such as LV
systolic or diastolic dysfunction, non-sustained
VT, QRS duration ≥180 ms, extensive RV
scarring, or inducible sustained VT at EP study

PACES/HRS. Heart Rhythm 2014;11:e102-65

D-TGA/ATRIAL SWITCH

SCD IN D-TGA/ATRIAL SWITCH

Khairy P et al. Circulation EP 2008;1:250-257

GERMAN COHORT WITH PRIMARY AND SECONDARY PREVENTION ICDs

• N=33

Patient No.	Age at ICD Implantation (Years)	Follow-Up with ICD (Years)	Appropriate ICD Therapies	ICD Implantation due to	NYHA @ Implantation	Duration of QRS @ Implantation (ms)
#1	30.8	11.6	5 × ATP @ fast VT	VT on Holter	П	160
#2	26.0	3.5	1 × ATP @ slow VT	Impaired RV function	II	100
#3	26.9	4.1	1 × shock @ fast VT	VT on Holter	II	120

- Appropriate shock rate overall: 1.9%/year
- No patient with inducible VT/VF (N=11) had an appropriate shock

IMPROVING RISK STRATIFICATION FOR TGA/SYSTEMIC RV

http://www.greenbookblog.org

RISK STRATIFICATION IN D-TGA/ATRIAL BAFFLE

Year	Author	Complex TGA	AV block	NYHA >2	RV dysfunc t	Severe TR	QRS ≥140	QTc/ JTc	Atrial tachy	No beta- blocker
1994	Janousek				М	М			М	
1997	Gelatt		М						Μ	
1998	Wilson									
1998	Bernie								U	
2004	Sun				U			U	U	
2004	Kammeraad			U					U	
2005	Dos			М		U			М	
2007	Michael									
2008	Khairy								U	М
2009	Schwerzman n	U		U	U	U	U			
2014	Wheeler	U=	· Univ	ari ø ble	e analysi	s U			U	
160	M= Multivariable analysis					NSTITUTE				

EXERCISE AND SCD IN D-TGA

- 5 of 7 SCD events occurred during exercise Silka MJ et al. JACC 1998;32:245-51
- 18 of 22 (82%) of SCD events occurred during exercise
 Sun ZH et al. Am J Cardiol 2004;94:138-41
- 47 SCD events: 81% occurred during exercise
 - AF degenerating into VF on exercise test

Kammeraad et al. *JACC* 2004;5:1095-102

Sudden cardiac death in transposition of the great arteries with a Mustard or Senning baffle: the myocardial ischemia hypothesis

Paul Khairy

Curr Opin Cardiol. 2017;32:101-7

Purpose of review

The literature on sudden death in transposition of the great arteries (D-TGA) with atrial switch surgery is reviewed and a pathophysiological mechanism is proposed.

Recent findings

Over 80% of sudden deaths in patients with D-TGA and Mustard or Senning baffles occur during exercise. Factors most consistently associated with ventricular arrhythmias and sudden death include heart failure parameters and atrial arrhythmias. Atrial arrhythmias have been observed to trigger malignant ventricular arrhythmias. Exercise may promote 1:1 conduction, with inordinately high ventricular rates. Reconstructed intra-atrial pathways are associated with an impaired stroke volume response to increased heart rates. A high prevalence of perfusion defects has been reported despite the absence of coronary atherosclerosis, particularly involving the inferior wall of the systemic right ventricle. Beta-blockers have been independently associated with a lower rate of ventricular arrhythmias in patients with implantable cardioverter-defibrillators.

Summary

It is hypothesized that ischemia-related ventricular arrhythmias are a common mechanism for sudden death in patients with DTGA and atrial baffles. Ischemia may be provoked by rapid heart rates from sinus or atrial arrhythmias. Myocardial oxygen supply/demand mismatch may be exacerbated by the impaired stroke volume response, hypertrophic remodeling of the pressure-loaded systemic right ventricle, and inefficient coronary circulation.

Keywords

Mustard baffle, myocardial ischemia, Senning baffle, sudden cardiac death, transposition of the great arteries

HEART RATE AND STROKE VOLUME

Derrick GP et al. Circulation 2000;102:154-9

D-TGA AND PERFUSION DEFECTS

Lubiszewska B et al. JACC 2000;36:1365-70

AUTOPSIES: SCD IN TGA/ATRIAL SWITCH

Unpublished, Montreal Heart Institute

RISK MARKERS AND RISK REDUCTION

Category	Potential risk marker	Risk reduction
Sinus tachycardia	Exercise-induced syncope	Avoid high-intensity dynamic sportsPacemaker: limit high upper sensor rate
Atrial tachycardia	 Inducible atrial tachycardia Increased P-wave duration, dispersion 	 Catheter ablation Pacemaker: limit high upper tracking rate; program mode-switch Beta-blockers
AV node	Short AV node refractory period	• Beta-blockers
Abnormal SV response	 Decreased SV or O₂ pulse response Blunted/hypotensive BP response 	 Address hemodynamic issues: obstruction to PV/SV return, increased PCWP
Perfusion defects	 Exercise-induced ECG changes Stress-induced reversible perfusion defects, SWMA 	• Beta-blockers
S		MONTREAL

Khairy P. Curr Opin Cardiol. 2017;32:101-7

β-BLOCKERS

Time from ICD implantation (years)

Khairy P et al. *Circulation EP* 2008;1:250-7 PACES/HRS. *Heart Rhythm* 2014;11:e102-65

β-BLOCKERS IN D-TGA/ATRIAL BAFFLE

CONCLUSION

- Risk stratification for SCD is no simple task!
 - Risks and benefits must be weighed, including competing risks, in establishing the ideal threshold for ICD implantation, which is also dependent on economic considerations
- On the whole, we appear to be on the "right track" in risk stratifying TOF but should intensify and broaden our approach in TGA/atrial switch
- Future progress will require:
 - TOF: refining risk stratification schemes, prospective validation, demonstration of clinical improvement
 - TGA: incorporating additional markers (e.g., myocardial ischemia)

THANK YOU!

International Society for Adult Congenital Heart Disease

